Identification of the regulator gene responsible for the acetone-responsive expression of the binuclear iron monooxygenase gene cluster in mycobacteria.
نویسندگان
چکیده
The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ(54) factor, a gene encoding the σ(54) factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria.
منابع مشابه
Isolation and Identification of a Sulfide/Sulfoxide Monooxygenase Gene from a Newly Isolated Rhodococcus Sp. Strain FMF
Rhodococcus FMF is a gram-positive bacterium isolated for the first time from soil samples of Tabriz refinery in Iran. This microorganism is able to catabolize dibenzothiophene to 2-hydroxybiphenyl and inorganic sulfur without the destruction of carbon-carbon bonds. Three structural genes, dszA, dszB, and dszC have been characterized and shown to be responsible for this phenotype. In this work,...
متن کاملMolecular Identification of Rare Clinical Mycobacteria by Application of 16S-23S Spacer Region Sequencing
Objective(s) In addition to several molecular methods and in particular 16S rDNA analysis, the application of a more discriminatory genetic marker, i.e., 16S-23S internal transcribed spacer gene sequence has had a great impact on identification and classification of mycobacteria. In the current study we aimed to apply this sequencing power to conclusive identification of some Iranian clinical ...
متن کاملThe Comparison of Biochemical and Sequencing 16S rDNA Gene Methods to Identify Nontuberculous Mycobacteria
The identification of Mycobacteria in the species level has great medical importance. Biochemical tests are laborious and time-consuming, so new techniques could be used to identify the species. This research aimed to the comparison of biochemical and sequencing 16S rDNA gene methods to identify nontuberculous Mycobacteria in patients suspected to tuberculosis in Golestan province which is the ...
متن کاملEffect of drought stress on MYB gene expression and osmotic regulator levels of five durum wheat genotypes (Triticum turgidum L.)
Plant growth is greatly influenced by environmental stresses including water deficit, salinity and extreme temperatures. Therefore, the identification of genes, especially regulatory ones whose expression enables plants to adapt to or to tolerate these abiotic stresses, is very essential. MYB proteins, a superfamily of transcription factors, play regulatory roles in developmental processes and ...
متن کاملDetection of Heavy Metals Resistance Genes and Effects of Iron Nanoparticles on the Gene Expression in Pseudomonas Aeruginosa Using Real-Time PCR
Background: Heavy metals enter the environment through industrial activities and contaminate natural ecosystems. Identification of heavy metal-resistant bacteria plays an important role in environmental pollution and ultimately cleansing it. Therefore, the aim of the present study was to isolate the resistant genes of Pseudomonas aeruginosa and the effects of nanoparticles on gene expression u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 193 20 شماره
صفحات -
تاریخ انتشار 2011